
www.manaraa.com

RESEACH PAPER

Towards the Composition of Services by End-Users

A Mobile-Based Solution

Pedro Valderas • Victoria Torres • Vicente Pelechano

Received: 28 February 2018 / Accepted: 24 June 2019 / Published online: 20 August 2019

� Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Abstract Nowadays, we live surrounded by heterogeneous

and distributed services that are available to people any-

time and anywhere. Even though these services can be used

individually, it is through their synchronized and combined

usage that end-users are provided with added value.

However, existing solutions to service composition are not

targeted at ordinary end-users. In fact, these solutions

require technical knowledge to deal with the technological

heterogeneity in which they are offered to the market. To

this end, the paper presents a tool-supported platform that

is aided by: (1) EUCalipTool, an end-user mobile tool that

implements a Domain Specific Visual Language, which has

been specifically designed to compose services on mobile

devices; (2) a Faceted Service Registry, which plays the

role of gateway between service implementations and end-

users, hiding technological issues from the latter when

including services in a composition; and (3) a Generation

Module, which transforms end-user descriptions into

BPMN specification that are interpreted by an execution

infrastructure developed for that purpose.

Keywords Service � Composition � End-user
development � BPMN

1 Introduction

Technologies and applications are evolving to create new

ecosystems of heterogeneous and distributed services that

are available to people anytime and anywhere. Nowadays,

our environment abounds with services that support our

lifestyles: services that track our activity through smart-

phones, that enable efficient use of home heating and

lighting, that allow us to interact with social networks, that

provide us with the weather forecast or traffic reports in

real time, and so on.

Although these services can be used individually, it is

their combined usage that has the potential to create new

value-added services for end-users. In addition, in a world

where end-users play an ever more important role in the

development of content, it makes sense to consider the

possibility of end-users creating new services through the

combination of pre-existing ones. By upgrading end-users

to prosumers (producer ? consumer) and involving them

in the process of service creation, both service consumers

and service providers can benefit from a cheaper, faster,

and better service provisioning (Yu et al. 2012).

However, services are implemented by using heteroge-

neous technologies such as SOAP or REST, which are

difficult for non-technical end-users to understand and use,

preventing them from composing services based on their

preferences and/or needs. For instance, if an end-user wants

to program her/his home air conditioning based on the

weather forecast and then publish the air conditioning

temperature on a social network such as Facebook, she/he

would have to deal separately with the three services

Accepted after three revisions by Matthias Jarke.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s12599-019-00617-z) contains sup-
plementary material, which is available to authorized users.

P. Valderas (&) � V. Torres � V. Pelechano
Pros Research Center, Universitat Politècnica de València, Camı́

de Vera/N, 46022 Valencia, Spain

e-mail: pvalderas@pros.upv.es

V. Torres

e-mail: vtorres@pros.upv.es

V. Pelechano

e-mail: pele@pros.upv.es

123

Bus Inf Syst Eng 62(4):305–321 (2020)

https://doi.org/10.1007/s12599-019-00617-z

https://doi.org/10.1007/s12599-019-00617-z
http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-019-00617-z&domain=pdf
https://doi.org/10.1007/s12599-019-00617-z

www.manaraa.com

involved in the example, handling maybe different URLs,

protocols, as well as data formats, and then integrate them.

In order to automate a scenario like this, existing compo-

sition environments (e.g., Intalio, Activiti, Signavio or

Bonita BPM) and service composition languages or nota-

tions (e.g., Petri nets, EPC, YAWL, BPMN or UML

Activity Diagrams) can be used. However, they are not yet

targeted at ordinary users, since their usage requires a

programming or modelling background. The complexity of

this problem increases further if we consider that mobile

devices have become the universal interface between ser-

vices and end-users. Furthermore, the need for service

compositions very often arises spontaneously, in a moment

of on-the-go inspiration, outside the office environment,

with no access to desktops computers or laptops. However,

existing mobile solutions mainly support the composition

of services through condition-action rules, avoiding the

creation of compositions with complex logics. In addition,

the list of services that are available to do so is usually

hard-coded in the mobile app, making it difficult to evolve.

A more detailed motivating example can be found in

Section A1 of the Appendix (available online via http://

link.springer.com).

1.1 Research Questions

Considering the motivation presented above, we think that

end-users require tools to define the service compositions

they need via mobile devices. Thus, we stated the problem

to be solved in this paper through the following four

research questions:

Research Question 1. How can we support end-users in

the creation of service compositions with complex logics

through the use of a mobile device?

Research Question 2. How can we provide end-users

with services from different vendors in such a way that

technological matters are hidden?

Research Question 3. How can we achieve a slight

evolution of the provided list of services in a transparent

way for end-users?

Research Question 4. How can we obtain exe-

cutable specifications from the descriptions created by

end-users with their mobile devices on-the-go?

1.2 Main Contributions

The main contributions of this work aim to answer the four

research questions presented above. They are the

following:

1. A Domain Specific Visual Language (DSVL) that

allows end-users to easily create service compositions

on mobile environments. This DSVL is supported by

EUCalipTool, a mobile authoring application for end-

users. This contribution aims to answer RQ1.

2. A Faceted Service Registry that plays the role of a

gateway between end-users and service implementa-

tions. This contribution aims to answer RQ2 and RQ3.

On the one hand, it introduces the concept of service

facet to maintain a separation between the semantic

data and the technological data of services, providing

end-users with the former when they are composing

services and hiding the latter. On the other hand, there

is no dependency between service implementation and

EUCalipTool, which facilitates the evolution and

maintenance of the provided services.

3. A Generation Module that allows end-users to generate

BPMN executable service compositions from the

descriptions they make with their mobile devices.

These BPMN compositions can be executed by a

BPMN engine immediately after these are obtained

from end-user descriptions, thus providing the on-the-

go aspect. To achieve this, a supporting execution

infrastructure is developed. This contribution aims to

answer RQ4.

The research methodology followed to perform this

work can be found in Section A2 of the Appendix.

1.3 Structure of the Paper

The remainder of the paper is organised as follows: Sect. 2

presents the related work. Section 3 introduces an over-

view of our solution. Section 4 introduces EUCalipTool

and its supported DSVL. Sections 5 and 6 present the

Faceted Service Registry and the Generation Module

respectively. Section 7 introduces the environment in

which the generated BPMN specifications are executed.

Section 8 discusses the evaluation of this work. Finally, the

conclusions and further work are presented in Sect. 9.

2 Related Work

In this section, we analyse various contributions that deal

with the composition of services in the context of mobile

end-user development. In Section A3 of the Appendix the

reader can find an additional discussion of some non-mo-

bile solutions as well as some approaches dealing with the

problem of integrating services that are technologically

different. Some insights extracted from the analysis of the

related work can be also be found in this section of the

Appendix.

Mobile end-user development approaches can be clas-

sified into two categories: (1) those that automate

123

306 P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020)

http://link.springer.com
http://link.springer.com

www.manaraa.com

behaviour by means of condition action rules, and (2) those

that provide a language with a richer expressivity in order

to define more complex flows of activities.

2.1 Trigger Action Programming

Trigger-action programming allows end-users to config-

ure the behaviour of a system by specifying triggers (e.g.,

‘‘if there is motion’’) and their resultant actions (e.g., ‘‘turn

on the lights’’). Following this approach we find iCAP

(Dey et al. 2006), a visual, rule-based system that allows

end-users to build, prototype, test, and deploy interactive

context-aware applications without writing any code. Other

approaches similar to iCAP are Atooma (2015), Tasker

(2015) and Locale (2015). Lucci and Paternò (2014) pre-

sented a comparison between Atooma, Tasker, and Locale

with the objective of analysing the expressiveness and

usability of this type of tool. The obtained results illustrate

that the most expressive environment (Tasker) was also the

most difficult to use, which reinforces the need to provide

end-user tools with high expressiveness, but without

compromising usability. Context Studio (Häkkilä et al.

2005) allows the creation of applications that activate

mobile functions when a defined context-action rule is

satisfied.

The works presented above have the limitation of the

semantics provided by trigger-action rules (‘‘if–then’’),

which is not enough to answer the proposed RQ1. RQ2 is

satisfactorily answered since these tools provide end-users

with metaphors that hide technological issues. However,

only the functionality that is locally available on the mobile

device can be executed. Thus, RQ3 – relating to the slight

evolution of the provided services – cannot be adequately

answered. Regarding RQ4, these works answer the ques-

tion satisfactorily since they provide the end-user with

authoring environments that allow the on-the-go execution

of the created compositions.

Another solution based on condition-action rules is

IFTTT (2015). In this case, the solution is not only focused

on composing the inbuilt functions of a mobile device. It

provides a complete software platform that connects apps,

devices and services from different developers in order to

trigger one or more automations. The idea behind this

solution is similar to that proposed in this paper: services

are registered in a proprietary repository through a website,

and they can be connected by the end-user with a mobile

app. Thus, any time a service is registered in their platform,

end-users can access it immediately in the mobile app. This

leads us to consider RQ3 as satisfactorily answered. RQ4 is

also supported since all the recipes defined by end-users are

executable on-the-go, without requiring the installation of

any generated app. In addition, IFTTT provides abstract

descriptions of services that hide technology issues, which

properly support RQ2. However, it suffers from the main

drawback of solutions based on ‘‘if–then’’ rules: it does not

have enough expressivity to properly answer RQ1.

2.2 Complex Flows of Activities

There are some other works that provide the possibility to

create service compositions with more complex logics than

condition-action rules.

MircroApp (Cuccurullo et al. 2011) provides end-users

with a graphic environment where they can create appli-

cations by including the actions that are offered by a

mobile phone (e.g., take a picture, send an email) in ver-

tical columns, allowing the specification of both a sequence

and a parallel execution.

Microservices (Danado et al. 2010) is an authoring tool

to create mobile applications. There are two different

views, the beginner’s view, which is targeted at users with

no programming skills, and the advanced view, which is

targeted at more advanced users. In the beginner’s view,

users are assisted during the application creation, whereas

in the advanced view, users have more freedom and control

when defining the behaviour of the application.

These two approaches provide a composition language

for end-users with a high expressiveness and provide high

level descriptions of services, which answer RQ1 and RQ2

satisfactorily. However, the internal implementation of the

tools and the adopted architectural design make it difficult

to properly satisfy RQ3, since services are coupled to end-

users’ mobile devices, complicating their evolution and

updating. Regarding RQ4, both works provide an archi-

tecture where end-user descriptions are interpreted by a

proprietary engine, without requiring the compilation and

installation of any code.

Another work that must be referenced is Workflow.is

(2018). This is an application that has two versions: one for

the web and another for Apple devices, including iPhones.

It allows end-users to create complex compositions through

the definition of a flow of actions in a vertical layout. These

flows can include repetitions and conditions. Thus, we can

consider that RQ1 is answered satisfactorily. RQ2 is not

properly supported since end-users must configure the

invocation data (i.e., protocol, host, port, and so on) to

execute external services. There is no mechanism to easily

evolve the list of provided services, since this tool only

focuses on the composition of the actions that are provided

by iOS devices (RQ3 is not satisfied). RQ4 is satisfactorily

answered since a fully operative execution environment is

provided that facilitates the execution of compositions

without deployment tasks.

Puzzle (Danado and Paternò 2014) is a framework that

allows end-users to create mobile applications directly on a

mobile device. It allows combining the functionality

123

P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020) 307

www.manaraa.com

provided by the device itself, smart objects, and web ser-

vices, as if they were jigsaw pieces. However, only

sequences of actions and iterations can be defined. No

support is provided for conditional actions or parallel

executions. Thus, although this work provides a language

with more expressiveness than, for instance, ‘‘if–then’’

rules, it cannot be considered to answer RQ1 satisfactorily.

The use of the jigsaw metaphor allows users to compose

services without handling technical issues. Thus, RQ2 is

properly supported. This work provides an HTTP archi-

tecture to include external services in composition time.

This architecture also supports the execution of composi-

tions. Thus, RQ3 and RQ4 can be considered satisfactorily

answered.

Finally, TouchDevelop (Athreya et al. 2012) is a mobile

programming environment targeted at end-user program-

mers, i.e., users with programming knowledge, to create

mobile applications. In this case applications are provided

as scripts written in the TouchDevelop language, which is

not targeted at ordinary end-users, so RQ1 is not supported

adequately. In the same way, technological issues need to

be managed to properly call services, which means RQ2 is

not supported. The flexibility of using low-level scripts

allows including any services easily so RQ3 can be con-

sidered properly supported. The requirement of RQ4 can be

considered to be met, since the created apps are executed

on the mobile phone itself.

2.3 Conclusions

The analysis of the related work illustrates that the four

research questions proposed in this work are not answered

satisfactorily by any of the approaches considered here. A

final comparison is shown in Table 1. We can see from

Table 1 that almost all the analysed approaches support the

execution of the service composition (RQ4). Note, how-

ever, that few approaches support the execution of com-

positions with complex logics (RQ1). Most of them

provide views of services that hide technological issues

(RQ2), but the provided services are limited in some

approaches to only inbuilt functions of mobile devices.

External services are not supported. Regarding the slight

evolution of the provided list of services (RQ3), we can see

that few approaches give a proper solution.

3 Conceptual Design

The main goal of this work is to provide end-users with

mobile tools to compose services that are provided by

vendors that may use different implementation technolo-

gies. To do so, we present a solution whose main pillars are

EUCalipTool, a Faceted Service Registry, and a Genera-

tion Module. The rationale behind the decisions that we

have taken to develop our solution can be found in Sec-

tion A4 of the Appendix.

The three proposed contributions are organized into a

three-layer architecture (Fig. 1):

The Service Layer encompasses the services developed

by professionals. Services are implemented by using the

technology that each professional has considered to be

appropriate (e.g., SOAP or REST).

The Application Layer provides end-users with

EUCalipTool¸ an end-user authoring tool for mobile

devices. EUCalipTool interacts with a Faceted Service

Registry to access high-level descriptions of services in

order to provide them for end-users. The end-users use the

DSVL that supports EUCalipTool to compose these service

descriptions.

The Component Layer hosts the software artefacts

required to connect the two layers presented above,

allowing end-users to create and execute service compo-

sitions. On the one hand, the Faceted Service Registry

plays the role of a gateway between service implementa-

tions and end-users, hiding service technological issues

from the latter. It maintains two facets of services: an

invocation facet, which is used to invoke services; and a

semantic facet, which is used by EUCalipTool. To make a

service available to end-users, developers must register it

with the registry by defining both types of data (invocation

and semantic). Details about how developers can register

services in the repository can be found in Section A8.1 of

the Appendix. End-users only need to interact with the

high-level representation provided by the semantic facet.

On the other hand, once end-users have finished a

composition, EUCalipTool submits it to the Generation

Module, which connects to the Faceted Service Registry in

order to obtain the invocation facet of each service of the

composition. Then, this data is used together with the end-

user description in order to generate an executable BPMN

specification, which is interpreted by an Execution Infras-

tructure developed for that purpose. This infrastructure is

embowed with a BPMN engine such as Activiti.

Table 1 Comparison of mobile end-user development approaches

Approaches RQ1 RQ2 RQ3 RQ4

iCAP, Atooma, Tasker and, Locale No Yesa No Yes

Ifttt No Yes Yes Yes

MicroApp, Microservices Yes Yesa No Yes

Workflow.is Yes No No Yes

Puzzle No Yes Yes Yes

TouchDevelop No No Yes Yes

aOnly inbuilt functions of a mobile device

123

308 P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020)

www.manaraa.com

In order to better understand how end-users can create

and execute a composition of services, we summarise the

steps that each participant of the proposed architecture

performs. These steps are illustrated in Fig. 1 and are as

follows:

1. Professional developers implement services by using

the technology they consider opportune and register

them in the Faceted Service Registry. They define the

invocation and semantic facets of each service.

2. End-users create an empty composition with EUCa-

lipTool in order to include the desired services.

3. EUCalipTool provides end-users with high-level

descriptions of services. These descriptions are pro-

vided by the Faceted Service Registry (semantic facet

of services).

4. End-users complete a composition by using the

composition constructors provided by EUCalipTool

and send it to the Generation Module.

5. The Generation Module accesses the Faceted Service

Registry in order to obtain the invocation data of each

service included in the composition (invocation facet

of services).

6. From both the end-user description and the invocation

data of services, the Generation Module creates a

BPMN executable specification that is sent to the

execution infrastructure.

7. The Execution Infrastructure is supported by a BPMN

engine such as Activit that executes the service

composition. In order to interact with end-users if

some data must be requested or shown, the infrastruc-

ture interacts with EUCalipTool, which provides end-

users with the proper user interface.

Execu�on
Infrastructure

Social Networks Air Condi�oning

Host: 192.168.100.2
Protocol: HTTPS, REST
Service Name: program
Port: 8081
Input type: JSON

Bike Sta�on

Host: valenbici.gvsa.es
Protocol: HTTP, REST
Service Name: book
Port: 8082
Input type: JSON

Weather Service

Host: weather.mcid.es
Protocol: HTTP, REST
Service Name: getForeCast
Port: 80
Input type: JSON

Service Registry

Professional
Developers

develop

Register Services

Genera�on
Module

Execute

Seman�c
Facet

Invoca�on
Facet

BPMN
Specifica�on

EUCalipTool

Host: graph.facebook.com
Protocol: HTTPS, REST
Service Name: login
Port: 443
Input type: JSON

AP
PL

IC
AT

IO
N

 L
AY

ER
CO

M
PO

N
EN

T
LA

YE
R

SE
RV

IC
E

LA
YE

R

End-Users

End-user
descrip�ons

2

3 4

5
6

7

1

7
Interact

with users,
if needed

Fig. 1 Architecture of the proposed solution

123

P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020) 309

www.manaraa.com

4 A DSVL for Creating Service Compositions

with EUCalipTool

In this section, we present the main concepts of the DSVL

supported by EUCalipTool, which allows end-users to

compose services by using the respective high-level

description. This DSVL was presented in detail in a pre-

vious work (Valderas et al. 2017).

EUCalipTool proposes the creation of a composition by

always using the metaphor of ‘‘adding an element’’ to a con-

tainer. The composition is the main container and end-users

can add activities or fragments. A detailed description of its

metamodel can be found in Section A5.1 of the Appendix.

Activities are high-level representations of the services

that are developed by professionals and have been regis-

tered in the Service Registry. We use the term ‘‘activity’’

instead of service because it is closer to end-users’ mental

models (Engeström et al. 1999).

Fragments are based on the resultant structures of

applying change patterns (which are abstractions of BPMN

constructors, see Webber et al. (2008)). There are frag-

ments of three types: (1) the Parallel Fragment, which can

contain branches of activities that must be performed at the

same time; (2) the Loop Fragment, which contains a set of

activities that must be performed in an iterative way; and

(3) the Conditional Fragment, which contains conditioned

branches to perform activities when a condition is satisfied.

Fragments are structures that add specific logics (i.e.,

loop, parallel, and conditions) to a set of activities. How-

ever, end-users do not need to worry about the creation of

complex elements that represent such logics. Instead, they

are just required to add elements to a specific container (a

fragment). We have created an analogy between the

activity of adding elements, which is well-known by end-

users, and the composition of services. Note that analogies

are powerful cognitive mechanisms for constructing new

knowledge from knowledge already acquired and under-

stood (Repenning and Ioannidou 2006).

With regard to the visual aspect, in Danado and Paternò

(2014) different metaphors were evaluated by end-users in

order to identify which ones were most suited to intuitively

connect components and compose various arrangements. The

jigsaw and workflow metaphors were the two most highly

ranked. We have based our work on these two metaphors to

create the graphical representation of a service composition.

On the one hand, we use the workflow metaphor to define

the elements of a composition since it is easy to use in a

mobile device. Graphically, the workflow of the elements of

a composition is represented by applying the List layout

(Fig. 2), which is widely used in mobile design to facilitate

the scrolling of a collection of elements. The order in which

elements are displayed (from top to bottom) represents the

order in which they will be considered at runtime.

On the other hand, each element of a composition is

connected graphically to the next by a small inverted tri-

angle. This aspect was inspired by the jigsaw metaphor

(Renger et al. 2008), which defines pieces inserted into

others to reinforce the notion of connection or combination

of elements. We have used a similar solution to evoke the

idea of connecting activities and/or fragments.

Figure 5 shows an example of a composition’s graphical

representation Note that end-users can add elements to a

composition or to a fragment by using a button with the

‘‘?’’ symbol, which is located either at the end of the

composition or at the end of a fragment’s content.This

button is placed in the location where the new element will

be added in order to help end-users to create a mental

image of the result of the action before performing it. There

is also a delete button that makes it possible to remove

composition and fragment elements. This is an icon-based

button that shows the image of a trashcan, which is broadly

accepted to represent the action for removing/deleting. It is

displayed to the right of each element.

A component with three tabs (Fig. 3) has been defined to

add elements: the first two (Fig. 3a, b) allow activities and

fragments to be added. The third represents predefined

items (Fig. 3c), which are subsequently explained in detail.

Note that some activities may need some inputs to be

executed. The user interface designed to do that is intro-

duced in Section A5.2 of the Appendix.

4.1 Predefined Items

EUCalipTool provides end-users with Predefined Items,

which are conditional fragments with a predefined condi-

tion. It allows end-users an easier definition of actions that

depends on conditions such as weather, location, time, etc.

We have been inspired by end-user guidelines that promote

the provision of predefined components (Segal 2005). See

Valderas et al. (2017) for more details.

In order to configure the predefined conditions, specific

graphical components were designed. They were all

defined by taking into account the study presented in Galitz

(2002), which recommends selecting data instead of typing

it in, to avoid end-user errors. As representative examples,

Fig. 4 shows the screens that allow end-users to configure a

weather condition (A), a location condition (B) and a day

and time condition (C).

4.2 The Tool in Action

This section presents an example in which John, a uni-

versity student, automates some actions in an exam period

(see Section A1 of the Appendix for a detailed description

of this scenario).

123

310 P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020)

www.manaraa.com

After creating an empty composition (Fig. 5), John

accesses its graphical representation, which is shown in

Screen 1. Initially, it is represented by an empty list.

From the empty composition, John clicks the button

with the ‘‘?’’ symbol, and accesses Screen 2 where the

available services are shown as activities. From the list of

activities, John adds the activity ‘‘Book Seat at Library’’ to

Posi�on in
main flow

Graphical
Icon

Ac�vity’s Name or
Fragment’s Type

Remove
Element

Ac�vity

Fragment

Add new Element to the
Fragment Branch

Add new Element to the
Composi�on

Add and
Remove Branch

Selected Branch Selected Branch

Elements of the
selected Branch

Fig. 2 Graphical representation of a composition

Fig. 3 Tabs for adding elements

123

P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020) 311

www.manaraa.com

the composition (see result in Screen 3). Next, he clicks the

‘‘?’’ button again and selects a Weather Predefined Item

(see the list of available predefined items in Screen 4).

The Weather Predefined Item is configured with a

branch associated to the ‘Sunny’ state (see Screen 5). Next,

John adds the activities ‘‘Book Bike Parking’’ and ‘‘Check

Traffic Reports’’ to the newly created branch by following

the same steps as shown before (see result in Screen 6).

Thus, these activities will be executed if it is a sunny day.

Next, he adds another branch associated to the ‘Rainy’

state by clicking the ‘‘?’’ button in Screen 6, and adds the

activity ‘‘Get route by EMT’’ to it (see result in Screen 7).

By clicking the ‘‘?’’ button located just below the

composition again, John adds a Parallel Fragment (see the

list of available fragments is in Screen 8). He adds the

activity ‘‘Publish on Facebook’’ in one branch of the

fragment, and the activity ‘‘Publish on Twitter’’ in the other

by following the same steps as before (see the final result in

Screen 9). Thus, the activities included in each branch will

be executed at the same time, i.e., in parallel.

5 A Faceted Service Registry

The proposed service registry acts as a gateway between

end-users and service implementations, managing both

data types of services, which are represented by two facets:

semantic and invocation. On the one hand, EUCalipTool

provides end-users with a list of activities that correspond

with high-level descriptions of the services that are

available on the Faceted Service Registry (semantic facet).

On the other hand, the Faceted Service Registry also

maintains the invocation data of services (invocation facet)

in order to enable the execution of service compositions in

a real environment. This data is not used by EUCalipTool,

but is sent to a Generation Module in order to be managed.

Figure 6 describes the information that is stored in the

Faceted Service Registry for each of the facets by means of

a UML Class Diagram (Rumbaugh et al. 2004).

5.1 Semantic Facet

This facet describes the logics of the service. It is focused

on helping end-users to understand the internal behaviour

of services when creating a service composition.

In order to define this facet, we collected properties

incorporated in existing service profiles (Amir and Zeid

2004; Klusch and Sycara 2001; Ermagan and Krüger 2007;

Paolucci et al. 2002), and asked a group of end-users to

indicate which of these properties they found understand-

able. To carry out this task, we arranged some focus group

sessions with a total of 15 participants, aged between 20

and 43 years old (five females and eight males). The

majority of them used mobile devices daily, but none had a

background in programming. In each session, we gave

participants the list of properties extracted from the dif-

ferent analysed profiles, and asked them to explain what

each property meant.

Fig. 4 Configuration of the predefined items

123

312 P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020)

www.manaraa.com

1 2 3

4 5 6

7 8 9

Fig. 5 Example of usage of the

proposed end-user mobile tool

123

P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020) 313

www.manaraa.com

Based on the explanations we obtained, those properties

that most of the participants could explain properly were

included in the semantic facet. They are the following:

• Name: name of the service.

• Purpose: a high-level description of what constitutes a

(typical) successful execution of a service.

• Description: a brief, human-readable description of the

service, summarising what the service offers or what

capabilities are requested.

• Location: geographic scope of the service, (e.g.,

university, home). This property is useful to charac-

terise services such as those that are closely coupled

with the physical environment in which they are

executed.

• Inputs: values that are required to execute a service.

Each input is characterised by a name and a textual

description.

• Output: value obtained after the execution of a service.

It is defined by a name and a textual description.

• Type: classification of the service according to its

specific domain (e.g., weather, social networks, teach-

ing, commerce, and so on).

Additionally, we proposed other properties by analysing

some case studies developed through studies on context-

aware services (Serral et al. 2013), activity and task

Fig. 6 Faceted Service Registry data

123

314 P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020)

www.manaraa.com

modelling (Uden et al. 2008; Valderas et al. 2006), and

adaptive business processes (Ayora et al. 2013). After

checking with end-users which of them were understand-

able, we added the following:

• Semantic tags: a list of keywords that characterise the

internal behaviour of a service.

• Device dependencies: a list of physical devices that are

needed to execute a service. Note that a service may be

intrinsically linked to a specific device (e.g., services

that control an air conditioning machine or a smart TV

that need to interact with a mobile device).

• Icon: a graphical representation of the services.

As can be seen in Fig. 6 (elements depicted with blue

background headers), these properties are internally rep-

resented as follows: a service has a name, a purpose, a

description, a type, and a graphical icon must be intro-

duced. A service may have input and output arguments,

which have a name, and a description. Services also have a

location, which is represented by a name, latitude, longi-

tude and radius. Additionally, each service is semantically

marked with a list of tags and device dependencies that are

used to characterise their internal behaviour.

5.2 Invocation Facet

This facet defines the information that is required to exe-

cute a service at runtime (depicted with white background

headers in Fig. 6).

For each service, the registry maintains invocation data,

which can contain either the URL of the service if it is a

SOAP service; or the URL method to be use in the invo-

cation (POST or GET) and the way of passing the input

values (inputType, which can indicate the use of the pay-

load of the HTTP connection or a string codification in the

URL) if it is a REST service. This information is used to

invoke the service at runtime.

Furthermore, there are different types of service argu-

ments. In particular, an argument can be:

• Simple, which indicates that the argument has a simple

type value. Simple types are defined by the SimpleType

enumeration (String, Float, Integer, Double, Boolean,

Date, Time and LatLong).

• a List of values, which indicates that the argument may

contain a list of simple type values. These values must

be defined at runtime.

• a PredefinedList of values, which indicates that the

argument has a predefined list of options to be selected.

According to the PredefinedListType enumeration,

there are two types: Single Choice Lists, in which

users must select one—and only one—option; and

Multiple Choice Lists, in which users can select more

than one option.

• a Structure of fields, which indicates that the argument

is composed of several values.

6 BPMN Generation Module

The end-user descriptions that are created with EUCa-

lipTool are not executable, therefore we need to use a

mechanism that allows us to ‘compile’ them into an exe-

cutable version. To achieve this, we have implemented a

module that generates BPMN specifications from end-user

descriptions.

When end-users complete a composition, a JSON

description is sent by EUCalipTool to the BPMN generator

module. Then, this module parses the received description

with a JSON parser, and a set of transformation rules (TR)

are applied to generate a BPMN specification by using an

XML parser. The main BPMN elements that are generated

through these rules are tasks, gateways, and sequence

flows. These rules access the Faceted Service Registry to

obtain the required service invocation data, which is

included by means of XML elements such as exten-

sionElements. The rules are all summarized in Table 2.

Section A6 of the Appendix shows some representative

examples.

7 The Execution Environment

In this section, we present an HTTP-based execution

infrastructure to allow for the generated BPMN specifica-

tion to be executed on-the-go from the mobile devices of

end-users. Once a BPMN specification is generated

(Fig. 7), it is stored in a repository (step 0), and its exe-

cution is performed as follows:

1. In addition to the authoring environment, EUCalipTool

provides end-users with an Execution Module that

allows them to execute any service composition they

have made. Once a composition is selected for

execution, EUCalipTool interacts with a BPMN

Launcher of the execution infrastructure in order to

request the execution of the selected composition.

2. The execution infrastructure is composed of the

Activiti BPMN engine together with two additional

modules. One of these modules is the BPMN launcher,

which is in charge of loading BPMN specifications

from the BPMN repository and passing them on to the

Activiti engine for them to be executed.

3. Activiti is in charge of executing each BPMN spec-

ification it receives by respecting the blocks that are

123

P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020) 315

www.manaraa.com

defined (sequences, conditions, parallels, loops). Any

Service Task that must be executed Activiti sends to

the second module of the infrastructure engine: the

Service Invoker.

4. The Service Invoker is in charge of executing the

service that is represented by a service task. To do so,

it uses the invocation data (i.e., host, URL, arguments,

and so on) that is included at the time of generation

(see Sect. 6). The Service Invoker is complemented

with adapters that focus on managing the service

execution of a specific technology. Currently, we

support REST and SOAP services, as has already been

explained when introducing the invocation facet of the

Service Registry. Other technologies require the

implementation of the proper adapters by service

developers (this is explained in Section A8.2 of the

Appendix).

5. Once a service composition is launched, the Execution

Module provides the end-user with a user interface that

is used to either show the results of a composition or to

request end-users to input some data that is required to

execute a service.

Next, we present some snapshots of the screens that end-

users interact with when executing service compositions.

Figure 8a shows the list of the compositions that are

available for execution. Figure 8b shows an intermediate

screen that informs about the execution process. Figure 8c

shows a screen that requests end-users to select a library,

which consists of data that must be introduced at runtime.

Finally, Fig. 7d shows the results of the execution.

Table 2 Summary of the rest of the transformation rules

123

316 P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020)

www.manaraa.com

Section A7 of the Appendix presents the strategy used to

create these screens at runtime.

8 Evaluation

To evaluate our approach, we conducted several experi-

ments. In this section, we present an experiment to evaluate

the satisfaction of end-users with the complete process of

defining a composition, generating the executable specifi-

cation, and executing it. We also used this experiment to

understand how end-users envision the use of the platform

in a real scenario. In Section A10 of the Appendix the

reader can find the additional evaluations of our work.

Participants To perform this experiment, we recruited

13 end-users (8 male/5 female) that were familiar with

mobile devices and did not have knowledge of using pro-

gramming languages. We contacted them through e-mail or

Execu�on Infrastructure

EUCalipTool

Genera�on Module

Service
invoker

BPMN
Generator

BPMN
Repository

Authoring Front-End
Execu�on
Module

Services

BPMN
Launcher

1

2

3

4

5

0

Fig. 7 Execution environment

architecture

Fig. 8 Snapshots of the execution of a service

123

P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020) 317

www.manaraa.com

personal invitation. As to their jobs, 10 participants had

occupations not related to the academic environment or

computer science; and 3 of them belonged to the admin-

istrative staff of our research centre. Regarding their

experience with mobile devices, all participants had mod-

erate to considerableexperience using them to browse the

web, read e-mails or use social networks; 30.7% of them

also indicated that they play games with mobile devices.

With respect to desktop environments, 69.2% stated that

they daily interact with computers or laptops to read

emails, use word processors or spreadsheets, or to browse

the web. Finally, regarding other environments, 46.15% of

the participants indicated that they used or were interested

in the use of home assistants such as Alexa or Google

Home.

Design First, we arranged a working session to train all

participants in the use of EUCalipTool. Note that the

usability of the authoring tool was evaluated in another

experiment (see Section A10.1 of the Appendix). Next, we

conducted an evaluation that consisted of accomplishing a

specific task and a post-test questionnaire. Our main idea

was to propose to participants to perform an open task and

allow them to create the composition they preferred.

However, by using an open task there is the possibility of

obtaining unprecise answers, and there is also the risk that

the task remains unperformed (Danado and Paternò 2014).

Thus, the steps that we followed to perform the experiment

were the following:

1. We asked participants to describe a scenario where

they envisioned that it would be appropriate to use the

platform. When participants gave a precise answer, we

checked that EUCalipTool provided all the services

required to support such scenario. If this was not the

case, we included the missing services into the

Registry. In case participants could not provide a

precise answer, a list of scenarios was presented in

order to allow them to select the one that better fitted

their interest. The proposed scenarios can be found in

Section A9 of the Appendix.

2. Once participants indicated the scenario they preferred,

and we had checked that the proper services were

registered with the Faceted Service Registry (or added

them if it was necessary), we requested them to create

a service composition with EUCalipTool and execute

it.

3. Afterwards, we measured the satisfaction level of

participants. To do so, we used the Microsoft Product

Reaction Cards (Benedek and Miner 2002). This

method consists on providing participants with a list

of 118 words, and asking them to choose the words

that they would use to describe a product (we limited

the number of words to be selected to 5 to keep the

exercise short). For each selected word participants

were asked why they had chosen that particular word.

The list included positive words like ‘Useful’ and

‘Engaging’, but also negative words, such as ‘Frus-

trating’ and ‘Ineffective’. We also asked participants to

complete a questionnaire in order to know their

perceptions about the usability of the execution

interface. We used an adapted SUS questionnaire

(Broke 1996) that included a total of 10 questions

following a five-point Likert scale response ranging

from 1 (Strongly Disagree) to 5 (Strongly Agree).1

4. During task performance, we were present to clarify

any doubts participants could have, and took notes on

the way they completed the tasks. After finishing the

experiment, we had informal interviews with partici-

pants to comment on the notes made, to ask them for

the reasons for the word selection according to the

MRC method, and to discuss with them the comments

they provided in the questionnaire.

Results Regarding the application scenarios, only 3

participants were able to give a precise answer to the

proposed open question. The scenarios they described were

based on smart home environments. The rest of participants

selected one of the proposed scenarios as follows: 3 of

them selected a scenario based on a smart home; 3 of them

selected a scenario based on smart cities; 2 of them

selected a scenario based on integration of mobile devices

with social networks; and 2 participants selected a scenario

based on services which support sport activities. Although

the proposed scenarios may be biased by our experience,

they presented heterogeneous application situations and

give a preliminary idea of where end-users would foresee

EUCalipTool to be used. In particular, most of the partic-

ipants felt comfortable using the platform in Smart Home

or Smart Cities environments.

As to the end-user satisfaction level with the whole

platform, which was evaluated through the use of Micro-

soft Reaction Cards, Fig. 9 shows a graph with occurrences

of the words that received more than 2 mentionings. As we

can see, ‘‘Easy to use’’ and ‘‘Efficient’’ were the partici-

pant’s most selected keywords. Both keywords show that

subjects were pleased with the functions provided by the

platform and the way of using them. It is worth noting that

both ‘‘time-saving’’ and ‘‘time-consuming’’ were selected,

which can be a little contradictory. After asking the par-

ticipants who selected these keywords we understood that:

those who selected ‘‘time-saving’’ were considering that

the service composition they created can help them to save

time (they were thinking of the final product); those who

selected ‘‘time-consuming’’ were considering that it

1 The questionnaire can be found at https://goo.gl/forms/

ihvdX5BxEIwC5lGi2.

123

318 P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020)

https://goo.gl/forms/ihvdX5BxEIwC5lGi2
https://goo.gl/forms/ihvdX5BxEIwC5lGi2

www.manaraa.com

requires some time to create and execute a composition

(they were thinking of the composition and execution

process). In any case, the fact that some participants con-

sidered that the platform was ‘‘time-consuming’’ reinforced

our understanding that it is useful to provide mechanisms

such as the predefined items in order to facilitate the use of

the platform. If end-users are provided with predefined

items that just need to be configured they may need less

time to create service composition, which may improve the

perception of ‘‘time-consuming’’.

Finally, the results obtained in the usability evaluation

of the execution environment are quite satisfactory

(Fig. 10). The answers given by participants allowed us to

conclude that 76.9% of the participants (10 out of 13)

considered the execution interface understandable; 69.2%

(9 out of 13) found that the screens for introducing data

were easy to use; and finally, 84.6% (11 out of 13) were

satisfied with the overall interaction design. The main

problem they detected was related to the way EUCalipTool

alerted them to enter data. Currently, only one screen to

request data entry is displayed. There is no other mecha-

nism implemented to alert end-users (for example, sound

alert, vibration, etc.). Some end-users found this aspect a

little uncomfortable and proposed some kind of notification

that would relieve them from having to be aware of the

interaction screens during the whole execution process.

9 Conclusions and Further Work

In this paper, we have presented a tool-supported platform

to help end-users in the composition of technologically

heterogeneous services by using their mobile devices. The

development and validation of this work has allowed us to

learn some lessons that are summarised in Section A11 of

the Appendix.

The proposed platform is based on three key pillars:

• EUCalipTool provides end-users with an intuitive

mobile environment that allows end-users to create

complex compositions by means of a DSVL specifi-

cally defined for mobile devices.

• A Faceted Service Registry plays the role of a gateway

between end-users and service implementation. This

aspect allows us to achieve the goal of keeping end-

users unaware of any any technological issue related

with services. In addition, descriptions of available

Fig. 9 Satisfaction evaluation with Microsoft react cards

Fig. 10 SUS Scores obtained for the execution interface

123

P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020) 319

www.manaraa.com

services are totally decoupled from the end-user tool,

facilitating its evolution and maintenance.

• A Generation Module transforms end-user descriptions

into specifications that can be executed in a real

environment. In addition, a specific Execution Infras-

tructure has been developed in order to execute these

BPMN specifications on-the-go.

However, this is an open research work. For instance,

we need to manage the security aspects and service

authorization. Many services require users to be registered

so that they can be executed by means of the combination

of a user and password, or of some key. We plan to extend

the EUCalipTool platform by an identification data wallet

in which users can store their data the first time they

introduce it, allowing for its use in further executions.

Current trends turn the social aspect into a key pillar of

software solutions. Thus, we are working on extending our

work in order to provide EUCalipTool with an added social

value that facilitates the development of services by and for

‘‘the crowd’’.

Finally, we also plan to enrich EUCalipTool with con-

text-aware features that can benefit from the rich ecosystem

of internet connected devices. We intend to apply the

People as a Service (PeaaS) paradigm (Guillen et al. 2014)

that proposes using the capabilities of modern —mobile

devices to identify the sociological profiles of their owners.

References

Amir R, Zeid A (2004) A UML profile for service-oriented

architectures. In: Companion to the 19th annual ACM SIGPLAN

conference on object-oriented programming systems, languages,

and applications, Vancouver. ACM, New York, pp 192–193

Athreya B, Bahmani F, Diede A, Scaffidi C (2012) End-user

programmers on the loose: a study of programming on the

phone for the phone. In: IEEE symposium on visual languages

and human-centric computing, Innsbruck. IEEE, pp 75–82

Atooma (2015) Atooma, a touch of magic. https://www.atooma.com/.

Accessed 1 Oct 2018

Ayora C, Torres V, Weber B, Reichert M, Pelechano V (2013)

Enhancing modeling and change support for process families

through change patterns. In: Nurcan S et al (eds) Enterprise,

Business-Process and Information Systems Modeling. BPMDS

2013, EMMSAD 2013, vol 147. Lecture Notes in Business

Information Processing. Berlin, Heidelberg, pp 246–260

Benedek J, Miner T (2002) Measuring desirability: new methods for

evaluating desirability in a usability lab setting. In: Proceedings

from the Usability’s Professionals Association (UPA)

Broke J (1996) SUS. A ‘‘quick and dirty’’ usability scale. In: Jordan P

et al (eds) Usability evaluation in industry. Taylor & Francis,

London, pp 189–194

Cuccurullo S, Francese R, Risi M, Tortora G (2011) MicroApps

development on mobile phones. In: Costabile MF, Dittrich Y,

Fischer G, Piccinno A (eds) End-User Development. IS-EUD

2011, vol 6654. Lecture Notes in Computer Science. Berlin,

Heidelberg, pp 289–294

Danado J, Paternò F (2014) Puzzle: a mobile application development

environment using a jigsaw metaphor. J Vis Lang Comput

25(4):297–315

Danado J, Davies M, Ricca P, Fensel A (2010) An authoring tool for

user generated mobile services. In: Berre AJ, Gómez-Pérez A,

Tutschku K, Fensel D (eds) Future internet—FIS 2010. FIS

2010, vol 6369. Lecture Notes in Computer Science. Berlin,

Heidelberg, pp 118–127

Dey AK, Sohn T, Streng S, Kodama J (2006) iCAP: interactive

prototyping of context-aware applications. In: Fishkin KP,

Schiele B, Nixon P, Quigley A (eds) Pervasive Computing.

Pervasive 2006, vol 3968. Lecture Notes in Computer Science.

Berlin, Heidelberg, pp 254–271

Engeström Y, Miettinen R, Punamäki RL (1999) Perspectives on

activity theory. Cambridge University Press, Cambridge

Ermagan V, Krüger IH (2007) A UML2 profile for service modeling.

In: Engels G, Opdyke B, Schmidt DC, Weil F (eds) Model

Driven Engineering Languages and Systems. MODELS 2007,

vol 4735. Lecture Notes in Computer Science. Berlin, Heidel-

berg, pp 360–374

Galitz WO (2002) The essential guide to user interface design: an

introduction to GUI. Design principles and techniques. Wiley,

New York

Guillen J, Miranda J, Berrocal J, Garcia-Alonso J, Murillo JM, Canal

C (2014) People as a service: a mobile-centric model for

providing collective sociological profiles. IEEE Softw

31(2):48–53

Häkkilä J, Korpipää P, Ronkainen S, Tuomela U (2005) Interaction

and end-user programming with a context-aware mobile appli-

cation. In: Costabile MF, Paternò F (eds) Human-Computer

Interaction—INTERACT 2005, Lecture Notes in Computer

Science, vol 3585. Berlin, Heidelberg, pp 927–937

IFTTT (2015) IFTTT, if this then that. https://IFTTT.com/. Accessed

1 Oct 2018

Klusch M, Sycara K (2001) Brokering and matchmaking for

coordination of agent societies: a survey. In: Omicini A,

Zambonelli F, Klusch M, Tolksdorf R (eds) Coordination of

Internet Agents. Springer, Berlin, Heidelberg, pp 197–224

Locale (2015). http://www.twofortyfouram.com. Accessed 1 Oct

2018

Lucci G, Paternò F (2014) Understanding end-user development of

context-dependent applications in smartphones. In: Sauer S,

Bogdan C, Forbrig P, Bernhaupt R, Winckler M (eds) Human-

Centered Software Engineering. HCSE 2014, Lecture Notes in

Computer Science, vol 8742. Berlin, Heidelberg, pp 182–198

Paolucci M, Kawamura T, Payne TR, Sycara K (2002) Semantic

matching of web services capabilities. In: Horrocks I, Hendler J

(eds) The Semantic Web—ISWC 2002, Lecture Notes in

Computer Science, vol 2342. Berlin, Heidelberg, pp 333–347

Renger M, Kolfschoten GL, de Vreede GJ (2008) Challenges in

collaborative modeling: a literature review. In: Advances in

enterprise engineering I, vol 10, Montpellier, pp 61–77

Repenning A, Ioannidou A (2006) What makes end-user development

tick? 13 design guidelines. In: End user development. Human-

computer interaction series, vol 9. Springer, Berlin, pp 51–85

Rumbaugh J, Jacobson I, Booch G (2004) The unified modeling

language reference manual. Pearson, London

Segal J (2005) Two principles of end-user software engineering

research. ACM SIGSOFT Softw Eng Notes 30(4):1–5

Serral E, Valderas P, Pelechano V (2013) Context-adaptive coordi-

nation of pervasive services by interpreting models during

runtime. Comput J 56(1):87–114

Tasker (2015) Tasker, total automation for Android. http://tasker.

dinglisch.net/. Accessed 1 Oct 2018

Uden L, Valderas P, Pastor O (2008) An activity-theory-based model

to analyse web application requirements. Inf Res 13(2):1

123

320 P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020)

https://www.atooma.com/
https://IFTTT.com/
http://www.twofortyfouram.com
http://tasker.dinglisch.net/
http://tasker.dinglisch.net/

www.manaraa.com

Valderas P, Pelechano V, Pastor O (2006) A transformational

approach to produce web application prototypes from a web

requirements model. Int J Web Eng Technol 3(1):4–42

Valderas P, Torres V, Mansanet I, Pelechano V (2017) A mobile-

based solution for supporting end-users in the composition of

services. Multimed Tools Appl 76(15):16315–16345

Workflow.is (2018) Workflow. Spend less taps, get more done.

https://workflow.is/. Accessed 1 Oct 2018

Yu J, Sheng QZ, Han J, Wu Y, Liu C (2012) A semantically enhanced

service repository for user-centric service discovery and man-

agement. Data Knowl Eng 72:202–218

123

P. Valderas et al.: Towards the Composition of Services by End-Users, Bus Inf Syst Eng 62(4):305–321 (2020) 321

https://workflow.is/

	Towards the Composition of Services by End-Users
	A Mobile-Based Solution
	Abstract
	Introduction
	Research Questions
	Main Contributions
	Structure of the Paper

	Related Work
	Trigger Action Programming
	Complex Flows of Activities
	Conclusions

	Conceptual Design
	A DSVL for Creating Service Compositions with EUCalipTool
	Predefined Items
	The Tool in Action

	A Faceted Service Registry
	Semantic Facet
	Invocation Facet

	BPMN Generation Module
	The Execution Environment
	Evaluation
	Conclusions and Further Work
	References

